Lehrplan PLUS

Direkt zur Hauptnavigation springen, zur Servicenavigation springen, zur Seitennavigation springen, zu den Serviceboxen springen, zum Inhalt springen

Mathematik 12 (ABU, S, W, GH, IW)

gültig ab Schuljahr 2018/19

Im Lernbereich 1 sollen die Kompetenzen auch anhand von Geraden- und Parabelscharen (mit linearem Scharparameter) erworben werden. In den Lernbereichen 2 bis 5 soll dagegen keine Differenzial- und Integralrechnung mit Funktionenscharen betrieben werden.

M12 Lernbereich 1: Ganzrationale Funktionen (ca. 25 Std.)
Abschnitt zur PDF-Sammlung hinzufügen

Kompetenzerwartungen

Die Schülerinnen und Schüler ...

  • beschreiben und ermitteln die wesentlichen Eigenschaften von linearen und quadratischen Funktionen und deren Graphen (insbesondere Nullstellen, Steigung und y‑Achsenabschnitt einer Geraden, Scheitelpunkt und Öffnungsrichtung einer Parabel), um die zugehörigen Graphen zu skizzieren.
  • ermitteln die Wertemenge einer ganzrationalen Funktion unter Beachtung ihrer maximalen bzw. eingeschränkten Definitionsmenge.
  • ermitteln Nullstellen ganzrationaler Funktionen samt ihrer Vielfachheit mithilfe geeigneter Verfahren: Ausklammern, Anwenden binomischer Formeln, systematisches Probieren, Polynomdivision und Substitution. Sie stellen den Funktionsterm vollständig faktorisiert dar und bestimmen das Vorzeichenverhalten der Funktionswerte in der Umgebung der Nullstellen, um damit den Graphen der Funktion zu skizzieren. Außerdem berechnen sie die Koordinaten der gemeinsamen Punkte zweier Funktionsgraphen.
  • beschreiben das Verhalten der Funktionswerte ganzrationaler Funktionen für x → ∞ bzw. x → –∞ und entscheiden, ob die Funktionsgraphen eine Symmetrie (Achsensymmetrie zur y‑Achse, Punktsymmetrie zum Koordinatenursprung) aufweisen.
  • zeichnen bzw. skizzieren die Graphen von ganzrationalen Funktionen, um z. B. die Lösungsmenge von Ungleichungen, in denen ganzrationalen Terme vorkommen, anzugeben. Dabei nutzen sie vorgegebene oder bereits durch Rechnung ermittelte Eigenschaften der Funktionen.
  • treffen geeignete Aussagen zu Fragestellungen hinsichtlich anwendungsbezogener Vorgänge, die sich durch ganzrationale Funktionen modellieren lassen.
  • stellen anhand ausreichend vieler bekannter Informationen über eine ganzrationale Funktion und/oder über ihren Graphen den dazugehörigen Funktionsterm auf, um damit auf weitere Eigenschaften der Funktion und/oder auf den weiteren Verlauf des Graphen zu schließen.

M12 Lernbereich 2: Differenzialrechnung bei ganzrationalen Funktionen (ca. 40 Std.)
Abschnitt zur PDF-Sammlung hinzufügen

Kompetenzerwartungen

Die Schülerinnen und Schüler ...

  • berechnen Werte von Differenzenquotienten und deuten diese geometrisch als Sekantensteigungen. Außerdem interpretieren sie den Differenzenquotienten als mittlere Änderungsrate und nutzen diese Interpretation auch im Sachkontext, z. B. durchschnittliche Steigung eines Wegs, Durchschnittsgeschwindigkeit.
  • deuten den Wert eines Differenzialquotienten geometrisch als Tangentensteigung, interpretieren ihn als lokale Änderungsrate und nutzen diese Interpretation auch im Sachkontext (z. B. Momentangeschwindigkeit, größte Abnahmegeschwindigkeit der Konzentration eines Medikamentes im Blut nach der Einnahme des Medikamentes) und argumentieren damit. Sie ermitteln für ganzrationale Funktionen Werte für Differenzialquotienten anschaulich, z. B. grafisch.
  • erläutern die Bedeutung des Grenzwerts einer Funktion anschaulich auf der Grundlage eines propädeutischen Grenzwertbegriffs, insbesondere für x → ∞, für x → –∞, für x → x0 und bei der Bestimmung der Ableitung.
  • erläutern den Begriff der lokalen Differenzierbarkeit anschaulich anhand von geeigneten Funktionsgraphen. Dabei skizzieren sie auch Graphen von Funktionen, die nicht differenzierbar sind, z. B. den Graphen der Betragsfunktion.
  • ermitteln die größtmöglichen Intervalle, in denen der Graph einer ganzrationalen Funktion jeweils gleiches Monotonieverhalten bzw. Krümmungsverhalten aufweist. Dafür berechnen sie Ableitungen, insbesondere mit den Ableitungsregeln. Weiterhin begründen sie damit die Existenz von relativen Extrempunkten und Wendepunkten. Sie bestimmen ferner Art und Koordinaten solcher Punkte.
  • entscheiden über die Existenz und Lage von absoluten Extrempunkten und Randextrempunkten eines Funktionsgraphen. Damit ermitteln sie auch die Wertemenge der zugehörigen Funktion.
  • berechnen die Änderungsrate einer Größe mithilfe von Ableitungsfunktionen und bestimmen insbesondere Stellen stärksten Wachstums und stärkster Abnahme.
  • entscheiden, ob sich aus vorgegebenen Informationen bzgl. einer ganzrationalen Funktion f und ihrer Ableitungsfunktionen (bzw. deren Graphen) ein zugehöriger Funktionsterm f(x) ermitteln lässt. Damit bestimmen sie weitere Eigenschaften des zugehörigen Graphen von f. Ggf. auftretende Gleichungssysteme lösen sie routiniert mit bekannten Lösungsverfahren.
  • lösen anwendungsorientierte Optimierungsprobleme (z. B. das Problem des geringsten Materialverschnitts) mit den Methoden der Differenzialrechnung. Dabei achten sie auf die Verwendung einer sinnvollen Definitionsmenge für die zur Modellierung verwendeten Zielfunktion und berücksichtigen deren ggf. vorhandene Randextrema bezüglich dieser Definitionsmenge.
  • beschreiben und begründen, wie der Graph einer Funktion mit dem Verlauf des Graphen der zugehörigen Ableitungsfunktion bzw. der zugehörigen Stammfunktion zusammenhängt, um ausgehend vom Graphen einer dieser beiden Funktionen den qualitativen Verlauf des jeweils anderen Funktionsgraphen zu skizzieren.
  • schließen aus dem Term einer Funktion auf die Terme der zugehörigen Stammfunktionen.

M12 Lernbereich 3: Exponentialfunktion und Logarithmus (ca. 15 Std.)
Abschnitt zur PDF-Sammlung hinzufügen

Kompetenzerwartungen

Die Schülerinnen und Schüler ...

  • beschreiben und ermitteln die grundlegenden Eigenschaften der Funktion x ↦ a‧bc‧(x - d) + y0 (b > 0), um bei exponentiellen Vorgängen in Realsituationen Vorhersagen zu treffen.
  • entscheiden, welchen Einfluss eine Veränderung der Werte der Parameter a, b, c, d und y0 jeweils auf den Verlauf des Graphen der Funktion x ↦ a‧bc‧(x - d) + y0 (b > 0 und insbesondere b = e) hat. Umgekehrt bestimmen sie anhand eines vorgegebenen Graphen einer solchen Funktion möglichst viele Informationen über den zugehörigen Funktionsterm.
  • modellieren den exponentiellen Zusammenhang zweier Größen in anwendungsorientierten Problemstellungen (z. B. Kapitalverzinsung, radioaktiver Zerfall, Bakterienwachstum) durch geeignete Funktionen, um Aussagen über die Entwicklung einer Größe in Abhängigkeit der anderen Größe zu treffen.
  • berechnen, für welche Werte der unabhängigen Größe (z. B. Zeit t) die abhängige exponentiell wachsende Größe (z. B. Anzahl der Bakterien) bestimmte Werte annimmt, um beispielsweise Vorhersagen bezüglich der zeitlichen Entwicklung einer Populationsgröße zu treffen. Beim Lösen der auftretenden Exponentialgleichungen verwenden sie die Logarithmen und die Logarithmusgesetze sicher.

M12 Lernbereich 4: Kurvendiskussion von Funktionen, die aus Verknüpfung von Exponentialfunktionen mit linearen und quadratischen Funktionen hervorgehen (ca. 14 Std.)
Abschnitt zur PDF-Sammlung hinzufügen

Kompetenzerwartungen

Die Schülerinnen und Schüler ...

  • diskutieren die Eigenschaften von Funktionen der Form x ↦ f(x)‧eg(x) + y0. Dabei sind f und g lineare oder quadratische Funktionen. Die in diesem Zusammenhang auftretenden Ableitungen berechnen sie unter Verwendung der Kettenregel und der Produktregel. Darüber hinaus zeichnen bzw. skizzieren sie die Funktionsgraphen unter Verwendung der diskutierten Eigenschaften dieser Funktionen.
  • lösen anwendungsorientierte Problemstellungen (z. B. Analyse der Entwicklung der Schadstoffkonzentration in der Atmosphäre), bei denen durch Idealisierung und/oder Modellierung Funktionen der Form x ↦ f(x)‧eg(x) + y0 auftreten. Dabei sind f und g lineare oder quadratische Funktionen.

M12 Lernbereich 5: Integralrechnung (ca. 10 Std.)
Abschnitt zur PDF-Sammlung hinzufügen

Kompetenzerwartungen

Die Schülerinnen und Schüler ...

  • führen den Nachweis, dass eine vorgegebene Funktion F eine Stammfunktion von f ist.
  • bestimmen neben Termen von Stammfunktionen ganzrationaler Funktionen auch Terme von Stammfunktionen für Funktionen der Form x ↦ a‧ec‧(x - d) + y0.
  • berechnen mithilfe von Stammfunktionen Werte von bestimmten Integralen, um damit Flächenbilanzen und Maßzahlen von Flächeninhalten endlicher Flächenstücke zu bestimmen, die durch vertikale Geraden und/oder Graphen von ganzrationalen Funktionen begrenzt sind, und nutzen ihr Verständnis, dass das bestimmte Integral eine Flächenbilanz beschreibt, für Argumentationen im Sachzusammenhang.

M12 Lernbereich 6: Zufallsexperiment und Ereignis (ca. 5 Std.)
Abschnitt zur PDF-Sammlung hinzufügen

Kompetenzerwartungen

Die Schülerinnen und Schüler ...

  • entscheiden für verschiedene Alltagssituationen, ob sich darin Abläufe finden, bei denen es sich um Zufallsexperimente handelt. Sie dokumentieren die Zufallsexperimente insbesondere mit Baumdiagrammen und fassen alle möglichen Ausgänge des Experiments in geeigneten Ergebnisräumen zusammen, deren Mächtigkeit sie ebenfalls bestimmen.
  • simulieren realitätsbezogene Zufallsexperimente mit dem Urnenmodell.
  • beschreiben Ereignisse eines Zufallsexperiments, deren Gegenereignisse und Verknüpfungen mit Worten und stellen sie als Teilmengen eines geeigneten Ergebnisraums dar (auch mit Venn-Diagrammen). Damit prüfen sie, ob ein Ereignis sicher, möglich oder unmöglich ist, und ob es identisch, vereinbar oder unvereinbar mit einem anderen Ereignis ist oder dieses nach sich zieht. Dabei nutzen sie auch die Gesetze von de Morgan.

M12 Lernbereich 7: Relative Häufigkeit und Wahrscheinlichkeit (ca. 8 Std.)
Abschnitt zur PDF-Sammlung hinzufügen

Kompetenzerwartungen

Die Schülerinnen und Schüler ...

  • ermitteln absolute und relative Häufigkeiten von Ereignissen für eine endliche Anzahl von Wiederholungen eines Zufallsexperiments, auch unter Verwendung des Satzes von Sylvester und der Gegenereignisregel.
  • bestimmen für zwei Ereignisse unter Verwendung einer Vierfeldertafel die absoluten und relativen Häufigkeiten dafür, dass insbesondere beide Ereignisse gleichzeitig eintreten, genau eines von beiden eintritt bzw. keines von beiden eintritt.
  • nutzen unter Bezugnahme auf das empirische Gesetz der großen Zahlen relative Häufigkeiten als sinnvolle Schätzwerte zur Vorhersage von Gewinnchancen bei Zufallsexperimenten.
  • grenzen anhand von Beispielen Laplace-Experimente von solchen Zufallsexperimenten ab, die sich nicht mithilfe der Annahme der Gleichwahrscheinlichkeit aller Elementarereignisse modellieren lassen, und berechnen Wahrscheinlichkeiten von Ereignissen, die bei Laplace-Experimenten auftreten.
  • berechnen und interpretieren Wahrscheinlichkeiten von Ereignissen mehrstufiger Zufallsexperimente. Dazu nutzen sie übersichtliche Baumdiagramme, die Pfadregeln und die von den relativen Häufigkeiten übertragbaren Rechenregeln.
  • bestimmen bedingte Wahrscheinlichkeiten bei zweistufigen Zufallsexperimenten, um diese in Bezug auf den Sachkontext zu interpretieren.
  • entscheiden, ob zwei Ereignisse stochastisch abhängig oder unabhängig sind, und erläutern ihre Entscheidung im Sachzusammenhang.

M12 Lernbereich 8: Grundlagen der Kombinatorik (ca. 4 Std.)
Abschnitt zur PDF-Sammlung hinzufügen

Kompetenzerwartungen

Die Schülerinnen und Schüler ...

  • bestimmen für kombinatorische Problemstellungen die Anzahl der Belegungsmöglichkeiten für ein k-Tupel mithilfe des allgemeinen Zählprinzips. Damit erschließen sie sich unter anderem die Anzahl der Möglichkeiten für die Bildung eines Passworts.
  • lösen kombinatorische Probleme aus realen Alltagssituationen. Insbesondere bestimmen sie die Anzahl der Möglichkeiten, aus n unterscheidbaren Kugeln genau k Kugeln ohne Zurücklegen und ohne Beachtung der Reihenfolge zu ziehen sowie die Anzahl der Möglichkeiten, die Buchstaben eines Wortes zu vertauschen.

M12 Lernbereich 9: Bernoulli-Ketten (ca. 4 Std.)
Abschnitt zur PDF-Sammlung hinzufügen

Kompetenzerwartungen

Die Schülerinnen und Schüler ...

  • entscheiden, ob es sich bei speziellen Zufallsexperimenten um Bernoulli-Experimente (z. B. Werfen einer Laplace-Münze) oder um Bernoulli-Ketten (z. B. dreimaliges Werfen eines Laplace-Würfels) handelt, und geben ggf. die zugehörige Kettenlänge n und Trefferwahrscheinlichkeit p an.
  • bestimmen die Wahrscheinlichkeiten von Ereignissen, die bei Bernoulli-Ketten auftreten. Sie berechnen z. B. die Wahrscheinlichkeit, dass beim fünfmaligen Drehen eines Glücksrades mindestens einmal ein Treffer angezeigt wird.

M12 Lernbereich 10: Zufallsgröße und Wahrscheinlichkeitsverteilung (ca. 10 Std.)
Abschnitt zur PDF-Sammlung hinzufügen

Kompetenzerwartungen

Die Schülerinnen und Schüler ...

  • erläutern anhand geeigneter Realsituationen die Begriffe Zufallsgröße und Zufallswert. Sie stellen den durch eine diskrete Zufallsgröße festgelegten Zusammenhang zwischen den Ergebnissen eines Zufallsexperiments und den Zufallswerten tabellarisch dar.
  • berechnen die Wahrscheinlichkeiten dafür, dass eine diskrete Zufallsgröße bestimmte Werte annimmt. Sie stellen die Wahrscheinlichkeitsverteilung einer diskreten Zufallsgröße in Tabellenform sowie in grafischer Darstellung als Stabdiagramm oder Histogramm dar.
  • berechnen die charakteristischen Maßzahlen (Erwartungswert, Varianz und Standardabweichung) von Zufallsgrößen und interpretieren diese in Bezug auf den Sachkontext, um z. B. zu beurteilen, ob Spielangebote fair, günstig oder ungünstig sind, oder um über die Vergleichbarkeit zweier Wahrscheinlichkeitsverteilungen zu entscheiden. Bei der Berechnung der Varianz nutzen sie vorteilhaft die Verschiebungsformel.
  • entscheiden, ob eine Zufallsgröße binomialverteilt ist, und bestimmen ggf. deren Erwartungswert, Varianz und Standardabweichung.
  • berechnen und veranschaulichen bei Zufallsgrößen, insbesondere bei binomialverteilten Zufallsgrößen, Wahrscheinlichkeiten der Form P(X = k), P(X ≤ k), P(X ≥ k) oder P(a ≤ X ≤ b), auch mit a = μ – nσ und b = μ + nσ.

M12 Lernbereich 11: Testen von Hypothesen (ca. 5 Std.)
Abschnitt zur PDF-Sammlung hinzufügen

Kompetenzerwartungen

Die Schülerinnen und Schüler ...

  • stellen für Realsituationen Hypothesen bezüglich einer bestimmten Grundgesamtheit auf und erläutern ihr Vorgehen, sich anhand einer Stichprobe aus dieser Grundgesamtheit mithilfe einer sinnvollen Entscheidungsregel für oder gegen diese Hypothesen zu entscheiden.
  • formulieren die Testgröße (nur binomialverteilt) im Rahmen eines Hypothesentests. Sie entwickeln eine für die Nullhypothese geeignete Entscheidungsregel durch die Angabe eines Annahmebereichs und eines Ablehnungsbereichs, und untersuchen, wie sich das Verändern dieser Bereiche auf fehlerhafte Entscheidungen auswirkt.
  • ermitteln beim einseitigen Signifikanztest mit binomialverteilter Testgröße zu einem vorgegebenen Signifikanzniveau den maximalen Ablehnungs- bzw. Annahmebereich der Nullhypothese. Sie beschreiben die dabei auftretenden Fehler erster und zweiter Art und berechnen und beurteilen deren Wahrscheinlichkeiten (Risiken erster und zweiter Art).