Die Auswahl der angestrebten Kompetenzen trifft die Lehrkraft in pädagogischer Verantwortung auf der Basis der ermittelten Lernausgangslage sowie des individuellen Förderbedarfs der einzelnen Schülerin bzw. des einzelnen Schülers. Die Kompetenzen werden vernetzt mit den Kompetenzerwartungen aus dem LehrplanPLUS der Mittelschule im Unterricht angebahnt.
Mathematik M10
M10 Motorik und Wahrnehmung
Kompetenzerwartungen
Die Schülerinnen und Schüler ...
- erfahren handelnd-begreifend geometrische Sachverhalte (z. B. stumpfe, spitze, rechte und gestreckte Winkel) und erproben diese in der Lernumgebung (z. B. im Klassenzimmer durch Herstellen und Messen von Winkeln).
- zeichnen unter direkter Anleitung der Lehrkraft, die handlungsbegleitend spricht, geometrische Figuren (Parallelogramme, Rechtecke, Kreise) sachgerecht mit mathematischen Werkzeugen.
- interpretieren Schaubilder, Tabellen sowie Grafiken und nutzen dabei Hilfen zur visuellen Differenzierung (z. B. Markierungen, Vergrößerungen, Präsentation von Ausschnitten und Details).
M10 Denken und Lernstrategien
Kompetenzerwartungen
Die Schülerinnen und Schüler ...
- fertigen angeleitet geometrische Netze und Schrägbildskizzen an und vergleichen diese mit realen Gegenständen und Körpern, dadurch erweitern sie ihr räumliches Denken.
- formulieren eigene Hypothesen zu einfachen funktionalen Zusammenhängen und zwischen den Grundgrößen der Prozentrechnung (z. B. „Wie ändert sich …, wenn …?“), um so ihr schlussfolgerndes Denken zu schulen.
- übertragen die Volumenberechnung bei geraden Prismen (V = G ∙ hk) mit einfachen Grundflächen (z. B. Rechteck, Dreieck) auf andere regelmäßige Prismen mit komplexeren Grundflächen (z. B. regelmäßige Vielecke) bzw. Zylinder sowie entsprechende Spitzkörper, um durch das Formulieren der allgemeinen Formel ihr Transferdenken zu trainieren.
- verwenden mathematische Zeichen, Formeln, Abkürzungen oder Maßeinheiten sicher, um dadurch ihr Symbolverständnis zu steigern.
M10 Kommunikation und Sprache
Kompetenzerwartungen
Die Schülerinnen und Schüler ...
- versprachlichen eigene Lösungswege in verständlicher Weise und sichern das Sprachverständnis der anderen Schülerinnen und Schüler durch gezielte Fragen.
- argumentieren mit mathematischen Fachbegriffen und nutzen Abrufstrategien sowie Merkhilfen eigenständig.
- führen Umfragen und Interviews durch und präsentieren ihre Ergebnisse, um dadurch ihre Gesprächssicherheit zu steigern.
- lösen Sachaufgaben gemeinsam mithilfe verschiedener Strategien zum Textverstehen (z. B. vorentlastende Begriffsklärung, Schlüsselwörter unterstreichen, Situationen nachspielen).
M10 Emotionen und soziales Handeln
Kompetenzerwartungen
Die Schülerinnen und Schüler ...
- verbalisieren ihre Meinungen und Hypothesen zu mathematischen Fragestellungen. Dabei nutzen sie Satzstrukturmuster und Leitfragen.
- finden angeleitet mathematische Probleme in ihrer eigenen Umgebung, verbalisieren diese und entwickeln durch den Lebensweltbezug Freude am Lernen.
- präsentieren eigene Ergebnisse und die Ergebnisse der Gruppe selbstsicher und verständlich. Dabei sprechen sie frei vor der Klasse.
M10 Lernbereich 1: Potenzen und Wurzeln
Kompetenzerwartungen und Inhalte
Die Schülerinnen und Schüler ...
- nutzen die Potenzschreibweise als eine andere Darstellung für die Multiplikation mit gleichen Faktoren und stellen Potenzen mit beliebiger Basis dar. Bei der Beschreibung des Potenzierens verwenden sie Fachbegriffe (Potenz, Basis, Exponent).
- begründen ausgehend von geeigneten Zahlenbeispielen die Potenzgesetze und nutzen diese für einfache Termumformungen.
- stellen Brüche in Potenzschreibweise dar (z. B. b7 • c-3) und übertragen die Potenzgesetze auf Terme, die auch negative Exponenten enthalten, um diese zu vereinfachen.
- erklären das Potenzieren und Radizieren als Umkehrung des jeweils anderen Vorgangs und verwenden den Begriff n-te Wurzel (z. B. 5-te Wurzel, 6-te Wurzel).
- wechseln zwischen der Wurzelschreibweise und der Potenzschreibweise mit Stammbrüchen und erläutern die mathematischen Zusammenhänge zwischen den Potenzgesetzen und Wurzelgesetzen mit eigenen Worten sowie geeigneten Fachbegriffen, um in der Sprache der Mathematik zu argumentieren.
- verwenden den Logarithmus, um Exponenten von Potenzen zu ermitteln.
M10 Lernbereich 2: Exponentialfunktion
Kompetenzerwartungen und Inhalte
Die Schülerinnen und Schüler ...
- übersetzen Realsituationen mit exponentiellem Wachstum (Zu- und Abnahmeprozesse, z. B. Zinseszins, Bevölkerungsentwicklung, radioaktiver Zerfall) in mathematische Modelle (Tabellen, Graphen, Terme) und geben umgekehrt zu mathematischen Modellen eine passende Realsituation an, um exponentielles Wachstum deutlich von linearem Wachstum abzugrenzen sowie charakterisierende Eigenschaften (z. B. Geschwindigkeit des Wachstums) zu identifizieren.
- verwenden die Potenz-, Wurzel- und Logarithmusgesetze beim Umgang mit Wachstumsprozessen, die sie ggf. auch computergestützt darstellen. Dabei ermitteln sie Anfangs- und Endwerte, Wachstumsfaktoren und ‑raten sowie die Dauer des Wachstums und überprüfen die Ergebnisse auf Plausibilität.
Alltagskompetenzen
M10 Lernbereich 3: Ähnliche Figuren
Kompetenzerwartungen und Inhalte
Die Schülerinnen und Schüler ...
- treffen anhand der jeweils vorliegenden Winkel und Streckenverhältnisse begründete Aussagen über die Ähnlichkeit von Figuren.
- verwenden die Begriffe zentrische Streckung, Streckungszentrum und Streckungsfaktor k bei Vergrößerungen und Verkleinerungen geometrischer Figuren fachgerecht, um die Bedeutung einer Maßstabsangabe zu erklären.
- berechnen an ähnlichen Figuren und Körpern fehlende Seitenlängen, Flächeninhalte und Volumina auch in Sachzusammenhängen.
- erklären die Strahlensätze basierend auf den Kenntnissen der zentrischen Streckung und wenden sie zur Berechnung unbekannter Strecken auch in Sachzusammenhängen an.
- erklären Kathetensatz sowie Höhensatz und geben sie in rechtwinkligen Dreiecken mit verschiedenen Seitenvariablen an. Sie berechnen fehlende Streckenlängen auch in Sachzusammenhängen.
M10 Lernbereich 4: Trigonometrie
Kompetenzerwartungen und Inhalte
Die Schülerinnen und Schüler ...
- beschreiben die Verhältnisse von Seitenlängen an ähnlichen rechtwinkligen Dreiecken und erläutern jeweils die Beziehung zwischen Winkelgröße und Seitenlängen unter Verwendung von Sinus, Kosinus und Tangens.
- berechnen Streckenlängen und Winkelgrößen unter Nutzung der Winkelfunktionen in rechtwinkligen Dreiecken bei Figuren und Körpern.
- lösen Sachaufgaben und berufsorientierende Aufgaben mithilfe der Winkelfunktionen. Dabei erstellen sie ggf. notwendige Skizzen und beschriften diese mit gegebenen Werten und gesuchten Größen.
- veranschaulichen Sinus und Kosinus eines Winkels am Einheitskreis und geben deren Wertebereich an. Sie verwenden die Funktion mit der Gleichung y = sin α zur Beschreibung von periodischen Vorgängen (z. B. Schwingung eines Pendels).
M10 Lernbereich 5: Flächeninhalt und Rauminhalt – Kugeln
Kompetenzerwartungen und Inhalte
Die Schülerinnen und Schüler ...
- erklären die Oberflächeninhaltsberechnung sowie die Volumenberechnung bei Kugeln anschaulich. Sie wenden die entsprechenden Formeln sicher an, auch bei Umkehraufgaben.
- zerlegen und ergänzen bei komplexeren Sachaufgaben sowie berufsorientierenden Aufgaben (Teil-)Körper und berechnen entsprechende Oberflächeninhalte und Volumina. Dabei erstellen sie ggf. notwendige Skizzen und beschriften diese mit gegebenen Werten und gesuchten Größen.
M10 Lernbereich 6: Beschreibende Statistik und Wahrscheinlichkeiten
Kompetenzerwartungen und Inhalte
Die Schülerinnen und Schüler ...
- erstellen zu mehrstufigen Zufallsexperimenten (mit und ohne Zurücklegen) Baumdiagramme, um die jeweiligen Wahrscheinlichkeiten in den verschiedenen Stufen übersichtlich darzustellen.
- bestimmen und begründen, ausgehend von Baumdiagrammen, die Wahrscheinlichkeit eines Ereignisses bei mehrstufigen Zufallsexperimenten mithilfe der Pfadregeln (Multiplikations- und Additionsregel).
- bestimmen die Anzahl der verschiedenen Möglichkeiten bei kombinatorischen Aufgabenstellungen (Permutationen).
- nutzen die Kenntnisse über mehrstufige Zufallsexperimente und kombinatorische Überlegungen, um statistische Aussagen in Texten und Darstellungen zu interpretieren und um Fehldeutungen zu vermeiden.
Alltagskompetenzen
M10 Lernbereich 7: Funktionale Zusammenhänge
Kompetenzerwartungen und Inhalte
Die Schülerinnen und Schüler ...
- ermitteln durch Rechnung Funktionsgleichungen linearer Funktionen aus verschiedenen Vorgaben (zwei Punkte gegeben, Punkt und Steigung gegeben, Punkt und Steigung der Senkrechten bzw. Parallelen gegeben), um bei der Lösung von inner- und außermathematischen Problemen jeweils die Steigung m, den y-Achsenabschnitt t, mögliche Schnittpunkte sowie fehlende Werte zu bestimmen und die Funktion zu zeichnen.
- wandeln Terme zweiten Grades mithilfe der binomischen Formeln um.
- bestimmen die Lösungsmengen von reinquadratischen sowie gemischtquadratischen Gleichungen mithilfe verschiedener Verfahren (z. B. quadratische Ergänzung, Lösungsformel, Zeichnung oder Faktorisierung) und bewerten diese Verfahren (z. B. hinsichtlich Einsetzbarkeit, Effizienz). In Sachzusammenhängen überprüfen sie die Plausibilität ihrer Ergebnisse.
- geben die Definitions- sowie die Lösungsmengen von Bruchgleichungen (Variable im Zähler und im Nenner) auch in Sachzusammenhängen an.
- erkennen und unterscheiden begründet lineare, umgekehrt proportionale und quadratische Abhängigkeiten in Sachsituationen, Tabellen und Graphen.
- stellen quadratische Funktionen der Formen y = +/- (x-xs)2 + ys bzw. y = +/- x2 + px + q durch Tabellen, Graphen und Funktionsgleichung dar. Darüber hinaus beschreiben und interpretieren sie die Funktionen.
- wechseln durch Umformung zwischen Normalform y = +/- x2 + px + q und Scheitelpunktform y = +/- (x-xs)2 + ys von quadratischen Funktionen, um die für die Aufgabenstellung geeignete Form zu ermitteln bzw. den Scheitelpunkt (xs; ys) zu bestimmen.
- ermitteln rechnerisch Funktionsgleichungen quadratischer Funktionen aus zwei jeweils gegebenen Punkten.
- bestimmen durch Rechnung und Zeichnung die Achsenschnittpunkte quadratischer Funktionen sowie deren Schnittpunkte mit linearen bzw. quadratischen Funktionen und beschreiben ihre Vorgehensweise.