Kompetenzerwartungen
Die Schülerinnen und Schüler ...
- entscheiden über die Existenz und Lage von absoluten Extrempunkten und Randextrempunkten eines Funktionsgraphen. Damit ermitteln sie auch die Wertemenge der zugehörigen Funktion.
- berechnen die Änderungsrate einer Größe mithilfe von Ableitungsfunktionen und bestimmen insbesondere Stellen stärksten Wachstums und stärkster Abnahme.
- entscheiden, ob sich aus vorgegebenen Informationen bzgl. einer ganzrationalen Funktion f und ihrer Ableitungsfunktionen (bzw. deren Graphen) ein zugehöriger Funktionsterm f(x) ermitteln lässt. Damit bestimmen sie weitere Eigenschaften des zugehörigen Graphen von f. Ggf. auftretende Gleichungssysteme lösen sie routiniert mit bekannten Lösungsverfahren.
- lösen anwendungsorientierte Optimierungsprobleme (z. B. das Problem des geringsten Materialverschnitts) mit den Methoden der Differenzialrechnung. Dabei achten sie auf die Verwendung einer sinnvollen Definitionsmenge für die zur Modellierung verwendeten Zielfunktion und berücksichtigen deren ggf. vorhandene Randextrema bezüglich dieser Definitionsmenge.
- beschreiben und begründen, wie der Graph einer Funktion mit dem Verlauf des Graphen der zugehörigen Ableitungsfunktion bzw. der zugehörigen Stammfunktion zusammenhängt, um ausgehend vom Graphen einer dieser beiden Funktionen den qualitativen Verlauf des jeweils anderen Funktionsgraphen zu skizzieren.
- schließen aus dem Term einer Funktion auf die Terme der zugehörigen Stammfunktionen.