Kompetenzerwartungen
Die Schülerinnen und Schüler ...
- stellen komplexe Zahlen z in der algebraischen Form z = a + b‧i oder mithilfe der Polarkoordinaten |z|, φ in der Polarform z = |z|‧(cos(φ) + i‧sin(φ)) bzw. in der Exponentialdarstellung der Polarform z = |z|‧ei‧φ dar und wechseln zwischen diesen Darstellungsformen sicher. Damit berechnen sie die Summe, die Differenz, das Produkt und den Quotienten von zwei komplexen Zahlen.
- stellen komplexe Zahlen als Ortsvektoren von Punkten in der Gauß'schen Zahlenebene dar und visualisieren dort auch die Verknüpfungen (Addition, Subtraktion, Multiplikation, Division) zweier komplexer Zahlen.
- stellen überlagerte harmonische Schwingungen mithilfe von Zeigerdiagrammen dar, um z. B. die resultierende Elongation aus überlagerten Schwingungen gleicher Frequenz zu bestimmen.