Kompetenzerwartungen und Inhalte
Die Schülerinnen und Schüler ...
- geben für alle bisher bekannten Funktionstypen charakteristische Beispiele an. Sie bringen durch geeignete Skizzen der zugehörigen Graphen wesentliche Eigenschaften der jeweiligen Funktion deutlich zum Ausdruck und beschreiben diese.
- erläutern anhand des Graphen sowie anhand des Funktionsterms das Grenzverhalten von Funktionen für x → +∞ und für x → −∞; sie unterscheiden Konvergenz und Divergenz und veranschaulichen die Konvergenz mithilfe der Vorstellung eines beliebig schmalen Streifens, den ein gegebener Funktionsgraph jeweils ab einem bestimmten x‑Wert nicht mehr verlässt. Zur Angabe des Grenzverhaltens verwenden sie die Grenzwertschreibweise.
- überprüfen rechnerisch, ob die Graphen von Funktionen achsensymmetrisch bezüglich der y‑Achse bzw. punktsymmetrisch bezüglich des Koordinatenursprungs sind.
- beschreiben, welche Änderungen an einem Funktionsterm dazu führen, dass der zum geänderten Funktionsterm gehörige Graph gegenüber dem ursprünglichen Graphen in x‑ oder y‑Richtung verschoben, in x‑ oder y‑Richtung gestreckt bzw. an einer Koordinatenachse gespiegelt ist. Sie sind sich bewusst, dass bei der Kombination mehrerer solcher Transformationen die Reihenfolge der Ausführung von Bedeutung sein kann. Sie demonstrieren und erläutern diese Zusammenhänge – auch unter Verwendung einer geeigneten Mathematiksoftware – und argumentieren mit ihnen, z. B. bei der Zuordnung von Funktionstermen zu Funktionsgraphen und umgekehrt.
- unterscheiden auf der Grundlage einer anschaulichen Vorstellung von Stetigkeit anhand von Beispielen für abschnittsweise definierte Funktionen Graphen stetiger Funktionen von Graphen nicht stetiger Funktionen.