Lehrplan PLUS

Direkt zur Hauptnavigation springen, zur Seitennavigation springen, zum Inhalt springen
Staatsinstitut für Schulqualität und Bildungsforschung München

Mathematik 11

Hinweis: In der Wissenschaftswoche erarbeiten die Schülerinnen und Schüler im zeitlichen Umfang einer Woche fachspezifische Zugänge zu einem fächerübergreifenden Rahmenthema, insbesondere in Vorbereitung auf das Wissenschaftspropädeutische Seminar.

M11 1 Spezielle Eigenschaften von Funktionen (ca. 14 Std.)
Abschnitt zur PDF-Sammlung hinzufügen

Kompetenzerwartungen und Inhalte

Die Schülerinnen und Schüler ...

  • geben für alle bisher bekannten Funktionstypen charakteristische Beispiele an. Sie bringen durch geeignete Skizzen der zugehörigen Graphen wesentliche Eigenschaften der jeweiligen Funktion deutlich zum Ausdruck und beschreiben diese.
  • erläutern anhand des Graphen sowie anhand des Funktionsterms das Grenzverhalten von Funktionen für x → +∞ und für x → −∞; sie unterscheiden Konvergenz und Divergenz und veranschaulichen die Konvergenz mithilfe der Vorstellung eines beliebig schmalen Streifens, den ein gegebener Funktionsgraph jeweils ab einem bestimmten x‑Wert nicht mehr verlässt. Zur Angabe des Grenzverhaltens verwenden sie die Grenzwertschreibweise.
  • überprüfen rechnerisch, ob die Graphen von Funktionen achsensymmetrisch bezüglich der y‑Achse bzw. punktsymmetrisch bezüglich des Koordinatenursprungs sind.
  • beschreiben, welche Änderungen an einem Funktionsterm dazu führen, dass der zum geänderten Funktionsterm gehörige Graph gegenüber dem ursprünglichen Graphen in x‑ oder y‑Richtung verschoben, in x‑ oder y‑Richtung gestreckt bzw. an einer Koordinatenachse gespiegelt ist. Sie sind sich bewusst, dass bei der Kombination mehrerer solcher Transformationen die Reihenfolge der Ausführung von Bedeutung sein kann. Sie demonstrieren und erläutern diese Zusammenhänge – auch unter Verwendung einer geeigneten Mathematiksoftware – und argumentieren mit ihnen, z. B. bei der Zuordnung von Funktionstermen zu Funktionsgraphen und umgekehrt.
  • unterscheiden auf der Grundlage einer anschaulichen Vorstellung von Stetigkeit anhand von Beispielen für abschnittsweise definierte Funktionen Graphen stetiger Funktionen von Graphen nicht stetiger Funktionen.

M11 2 Gebrochen-rationale Funktionen – Grenzwerte und Asymptoten (ca. 15 Std.)
Abschnitt zur PDF-Sammlung hinzufügen

Kompetenzerwartungen und Inhalte

Die Schülerinnen und Schüler ...

  • ermitteln die maximal mögliche Definitionsmenge sowie ggf. die Nullstellen einer einfachen gebrochen-rationalen Funktion (d. h. einer Funktion, bei der sowohl Zähler- als auch Nennerpolynom höchstens den Grad 2 aufweisen und deren Funktionsterm in vollständig gekürzter Form vorliegt). Sie geben ggf. das Zähler- bzw. Nennerpolynom als Produkt von Linearfaktoren an und verwenden situationsgerecht unterschiedliche Darstellungen des Funktionsterms.
  • ermitteln anhand des Funktionsterms – auch mithilfe zielgerichteter Termumformungen – das Grenzverhalten einer einfachen gebrochen-rationalen Funktion für x → +∞ und für x → −∞ und geben ggf. die Gleichung der waagrechten Asymptote an. Besitzt der Graph eine schräge Asymptote, geben sie deren Gleichung an, sofern diese unmittelbar aus dem zugehörigen Funktionsterm ersichtlich ist.
  • ermitteln mithilfe des Funktionsterms das links- und rechtsseitige Grenzverhalten einer einfachen gebrochen-rationalen Funktion für x → x0, um den Verlauf des Graphen in der Umgebung einer Polstelle x0 zu beschreiben. Zur Angabe des Grenzverhaltens verwenden sie die Grenzwertschreibweise und geben die Gleichung der zugehörigen senkrechten Asymptote des Graphen an.
  • analysieren einfache gebrochen-rationale Funktionen hinsichtlich ihrer wesentlichen Eigenschaften, schließen damit auf den Verlauf des jeweiligen Graphen und zeichnen diesen. Umgekehrt schließen sie aus gegebenen Eigenschaften auf einen dazu passenden Funktionsterm. In beiden Fällen überprüfen sie ihre Ergebnisse mithilfe einer geeigneten Mathematiksoftware.
  • ermitteln die Koordinaten von Schnittpunkten der Graphen zweier einfacher gebrochen-rationaler Funktionen bzw. des Graphen einer einfachen gebrochen-rationalen Funktion mit dem Graphen einer linearen Funktion rechnerisch, sofern sich das Lösen der dabei auftretenden Bruchgleichung auf das Lösen einer linearen oder quadratischen Gleichung zurückführen lässt. Die Lösung kontrollieren sie durch reflektierte Verwendung einer geeigneten Software.

M11 3 Bedingte Wahrscheinlichkeit und stochastische Unabhängigkeit (ca. 15 Std.)
Abschnitt zur PDF-Sammlung hinzufügen

Kompetenzerwartungen und Inhalte

Die Schülerinnen und Schüler ...

  • erkennen bedingte Wahrscheinlichkeiten als solche und bestimmen bedingte Wahrscheinlichkeiten auch unter flexibler Verwendung von Baumdiagrammen und Vierfeldertafeln.
  • erläutern, dass in Sachzusammenhängen (z. B. in der medizinischen Diagnostik) klar zwischen PB(A), PA(B) und P(A∩B) unterschieden werden muss. Sie sind in der Lage, mithilfe von Vierfeldertafeln oder Baumdiagrammen – auch solchen, in denen sie Wahrscheinlichkeiten mithilfe von absoluten Häufigkeiten in den Feldern bzw. Knoten illustrieren – von der einen auf die andere bedingte Wahrscheinlichkeit zu schließen.
  • erläutern die stochastische Unabhängigkeit zweier Ereignisse an konkreten Beispielen. Sie erkennen die stochastische Unabhängigkeit bzw. Abhängigkeit von Ereignissen an Baumdiagrammen und Vierfeldertafeln und prüfen rechnerisch, ob zwei Ereignisse stochastisch unabhängig sind.
  • berücksichtigen verschiedene Aspekte, um aus Daten abgeleitete Aussagen (z. B. zu politischen oder gesellschaftlichen Sachverhalten) kritisch zu hinterfragen (z. B. Umfang und Zusammensetzung der Stichprobe, Änderung bedingter Wahrscheinlichkeiten je nach betrachteter Teilmenge der Daten, Art der Datenerhebung und der zugrunde liegenden Fragestellung) und unterscheiden dabei auch die Begriffe Korrelation und Kausalität. Sie sind sich bewusst, dass bei der Analyse und Darstellung von Daten Interpretationen vorgenommen werden, die zu falschen Schlussfolgerungen führen können.

M11 4.1 Lokales und globales Differenzieren (ca. 19 Std.)
Abschnitt zur PDF-Sammlung hinzufügen

Kompetenzerwartungen und Inhalte

Die Schülerinnen und Schüler ...

  • berechnen Werte von Differenzenquotienten und deuten diese geometrisch als Sekantensteigungen. Sie interpretieren den Wert des Differenzenquotienten als mittlere Änderungsrate und nutzen diese Interpretation auch im Sachkontext (u. a. durchschnittliche Steigung einer Straße, Durchschnittsgeschwindigkeit).
  • erläutern die Definition des Differentialquotienten mithilfe von Mathematiksoftware, deuten dessen Wert geometrisch als Tangentensteigung und interpretieren diese Steigung als Steigung des Graphen im zugehörigen Punkt. Für einfache Beispiele ganzrationaler Funktionen berechnen sie Werte von Differentialquotienten.
  • erläutern an Graphen von Funktionen die Bedeutung des Begriffs der lokalen Differenzierbarkeit; dabei skizzieren sie insbesondere Graphen von Funktionen (u. a. der Betragsfunktion), die an einzelnen Stellen nicht differenzierbar sind.
  • erläutern – auch mithilfe von Mathematiksoftware – die Definition der Ableitungsfunktion, schließen aus dem Graphen einer Funktion auf den Verlauf des Graphen der zugehörigen Ableitungsfunktion und begründen ihre Vorgehensweise.
  • leiten ganzrationale Funktionen ab und nutzen dabei auch die Faktor- und die Summenregel.
  • interpretieren Werte von Ableitungsfunktionen als lokale Änderungsraten und nutzen diese Interpretation auch im Sachkontext (u. a. lokale Steigung einer Straße, Momentangeschwindigkeit).
  • nutzen die Ableitung, um die Gleichung einer Tangente an einen Graphen aufzustellen und die Größe des Steigungswinkels der Tangente zu berechnen.

M11 4.2 Anwendung der Differentialrechnung bei der Untersuchung ganzrationaler Funktionen (ca. 18 Std.)
Abschnitt zur PDF-Sammlung hinzufügen

Kompetenzerwartungen und Inhalte

Die Schülerinnen und Schüler ...

  • veranschaulichen die formale Definition der strengen Monotonie anhand geeigneter Skizzen und begründen damit z. B. die strenge Monotonie der Funktion x ↦ x3 (x ∈ IR). Sie erläutern, wie man aus der ersten Ableitung einer Funktion Rückschlüsse auf deren Monotonieverhalten sowie auf deren Extremstellen ziehen kann, und nutzen diese Zusammenhänge bei der Untersuchung ganzrationaler Funktionen.
  • interpretieren das Krümmungsverhalten des Funktionsgraphen als Monotonieverhalten der ersten Ableitung einer Funktion; sie erläutern, dass an einer Wendestelle die Steigung des Funktionsgraphen bzw. die lokale Änderungsrate der Funktion extremal ist, und interpretieren dies im Sachkontext (z. B. Zeitpunkt größten Wachstums). Sie untersuchen das Krümmungsverhalten ganzrationaler Funktionen mithilfe der zweiten Ableitung und ermitteln rechnerisch Wendestellen dieser Funktionen.
  • unterscheiden bei Extremstellen und Wendestellen zwischen notwendigen und hinreichenden Bedingungen. Sie begründen u. a., dass die Bedingung f ′(x0) = 0 notwendig, aber nicht hinreichend für die Existenz einer Extremstelle einer differenzierbaren Funktion f an der Stelle x0 ist.
  • analysieren ganzrationale Funktionen hinsichtlich ihrer Eigenschaften durch flexible und reflektierte Nutzung der Methoden der Differentialrechnung. Zur Kontrolle ihrer Ergebnisse verwenden sie auch eine geeignete Mathematiksoftware.
  • erläutern das Newton-Verfahren als Beispiel eines iterativen Näherungsverfahrens und bestimmen mithilfe dieses Algorithmus, auch unter Verwendung eines Tabellenkalkulationsprogramms, Näherungswerte für Nullstellen, die sich mit den bisherigen Kenntnissen nicht berechnen lassen. Sie sind sich bewusst, dass solche, auf Algorithmen beruhende Näherungsverfahren in unterschiedlichsten Bereichen verwendet werden (z. B. Klimaforschung, Flugzeugentwicklung, Börse), was ihnen erneut verdeutlicht, dass mathematische Kenntnisse für viele Berufsfelder eine wesentliche Grundlage darstellen.