Aufgaben
Thema |
Datentyp |
Zuordnung zum Lehrplan |
Förderung grundlegender Kenntnisse, Fähigkeiten und Fertigkeiten (M6 1.2)
Material
zur Aufgabe
|
PDF, 241.1 KB |
-
Lernbereich: Dezimalbrüche
|
Runden mit Grenzen (Ich-Du-Wir)
Material
zur Aufgabe
|
PDF, 131.8 KB |
-
Kompetenzerwartung: verstehen, wie mithilfe von Zehnteln, Hundertsteln etc. die Stellenwerttafel erweitert wird, und interpretieren die bislang nur bei Größen verwendete Kommaschreibweise neu. Sie runden Dezimalbrüche in Analogie zu den ganzen Zahlen.
|
Legespiel „Verschiedene Darstellungen von Bruchzahlen“
Material
zur Aufgabe
|
PDF, 328.1 KB |
-
Kompetenzerwartung: interpretieren Brüche je nach Situation mithilfe verschiedener Grundvorstellungen (Teil eines Ganzen, Teil mehrerer Ganzer, Zahl, Quotient) und verstehen, dass man Brüche entweder als endliche oder periodische Dezimalbrüche schreiben kann; sie entscheiden anhand der Primfaktorzerlegung des Nenners des vollständig gekürzten Bruchs, ob sich dieser als endlicher Dezimalbruch darstellen lässt.
|
Stationenarbeit „Teilen, was das Zeug hält“ (Lernaufgabe)
Material
zur Aufgabe
|
PDF, 1.0 MB |
-
Kompetenzerwartung: interpretieren Brüche je nach Situation mithilfe verschiedener Grundvorstellungen (Teil eines Ganzen, Teil mehrerer Ganzer, Zahl, Quotient) und verstehen, dass man Brüche entweder als endliche oder periodische Dezimalbrüche schreiben kann; sie entscheiden anhand der Primfaktorzerlegung des Nenners des vollständig gekürzten Bruchs, ob sich dieser als endlicher Dezimalbruch darstellen lässt.
-
Kompetenzerwartung: wandeln Brüche in Dezimalbrüche um und stellen umgekehrt endliche Dezimalbrüche sowie rein periodische Dezimalbrüche der Periodenlänge eins als Brüche dar; bei angemessen gewählten Zahlen führen sie den Darstellungswechsel auch im Kopf durch. Sie setzen diese Fertigkeiten insbesondere beim Größenvergleich von rationalen Zahlen ein und greifen dabei auch auf ihr automatisiertes Wissen der Dezimalbruchdarstellung häufig verwendeter Brüche zurück. Mit Ergebnisanzeigen digitaler Rechenhilfen (z. B. Taschenrechner-App) gehen sie reflektiert um, z. B. mit „0,166666667“ bei Eingabe von „1 : 6 =“.
|
ÜbungPLUS „Dezimalbrüche“
Material
zur Aufgabe
|
PDF, 237.1 KB |
-
Kompetenzerwartung: interpretieren Brüche je nach Situation mithilfe verschiedener Grundvorstellungen (Teil eines Ganzen, Teil mehrerer Ganzer, Zahl, Quotient) und verstehen, dass man Brüche entweder als endliche oder periodische Dezimalbrüche schreiben kann; sie entscheiden anhand der Primfaktorzerlegung des Nenners des vollständig gekürzten Bruchs, ob sich dieser als endlicher Dezimalbruch darstellen lässt.
-
Kompetenzerwartung: wandeln Brüche in Dezimalbrüche um und stellen umgekehrt endliche Dezimalbrüche sowie rein periodische Dezimalbrüche der Periodenlänge eins als Brüche dar; bei angemessen gewählten Zahlen führen sie den Darstellungswechsel auch im Kopf durch. Sie setzen diese Fertigkeiten insbesondere beim Größenvergleich von rationalen Zahlen ein und greifen dabei auch auf ihr automatisiertes Wissen der Dezimalbruchdarstellung häufig verwendeter Brüche zurück. Mit Ergebnisanzeigen digitaler Rechenhilfen (z. B. Taschenrechner-App) gehen sie reflektiert um, z. B. mit „0,166666667“ bei Eingabe von „1 : 6 =“.
|
Ergänzende Informationen sind nicht Bestandteil des Lehrplans.